
D5.4.1 Europeana Resolution Service

Documentation and final prototype

co-funded by the European Union

The project is co-funded by the European Union, through the eContentplus programme

http://ec.europa.eu/econtentplus

EuropeanaConnect is coordinated by the Austrian National Library

ECP-2008-DILI-528001

EuropeanaConnect

Europeana Resolution Discovery Service

Deliverable number/name D 5.4.1

Dissemination level

Delivery date 31/07/2010

Status v.1.0

Author(s) DNB, UW, ONB

eContentplus

This project is funded under the eContentplus programme,
a multiannual Community programme to make digital content in Europe more accessible, usable and

exploitable.

EuropeanaConnect is coordinated by the Austrian National Library

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

3 / 22

Distribution

Version Date of sending Addressee Role in project

0.1 July 2, 2010
Bernhard Haslhofer, Elaheh Momeni,
Georg Petz, Nuno Freire, Kadir Karaca
Kocer

Task partners

0.1 July 9 2010
Lars Svensson,

Joachim Korb

Project coordinator (DNB),

WP5 Leader

0.2 July 15 2010 EuropeanaConnect EuropeanaConnect Management

0.2 July 15 2010 Jan Molendijk, Martin Gordon Technical Lead, WP6 lead

1.0 August 18 2010 Max Kaiser PC

Approval

Version Date of approval Name Role in project

0.3 July 21 2010 Martin Gordon WP6 lead

0.3 August 8 2010 Jan Molendijk Technical Lead

1.0 August 20 2010 Max Kaiser PC

Revisions

Version Status Author Date Changes

0.1 Draft Kirubel Legasion July 8, 2010
Some changes and comments
done by the task partners

0.2 Draft Kirubel Legasion July 14, 2010
Some changes by Joachim Korb
and Lars Svensson

0.3 Draft Kirubel Legasion August 18 2010
Changes according to review
comments

1.0 Final VPZ August 18 2010 Some layout changes

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

4 / 22

Executive Summary

Task 5.4 in EuropeanaConnect is to build a Resolution Discovery Service for Persistent
Identifiers. The Europeana Resolution Discovery Service (ERDS) resolves URN:NBN, DOI,
ARK, HANDLE and all HTTP based persistent identifiers. Currently, the ERDS prototype is
running on the Europeana Sandbox for testing purposes. [Sandbox]

Persistent Identifiers are very important to enable digital objects to have a stable access
point over the Internet. Currently, URLs are used both as an address and as an identifier
for referencing the digital objects. If the URL is changed, however, it will no longer be
possible to locate the referenced digital object. Hence, the tasks of identifying and
accessing the digital objects must be distinguished from each other. In order to
distinguish these tasks, an identifier is required that is not permanently bound to a
particular address, but which can be resolved at any time to the valid address of the
digital object. This problem is solved by using Persistent Identifiers.

Unit/Functional testing and Stress testing have been conducted on the ERDS prototype. All
tests passed successfully; the ERDS prototype performs well under normal circumstances.

DNB has led the task of developing the ERDS together with BNP, ONB and UW.

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

5 / 22

Table of Contents

Table of Contents .. 5

1. Introduction .. 6

2. Functional requirements to develop the ERDS Service.. 8

2.1 Obligations of the ERDS Service... 8

2.2 ERDS Service Process Flow-Diagram .. 9

3. ERDS Architecture and Code-Descriptions... 9

3. ERDS Architecture and Code-Descriptions...10

3.1 ERDS Architecture...10

3.2 ERDS Code-Description ..11

3.3 The ERDS and HTTP Client Configuration ...11

4. Tests on the ERDS..13

4.1 Stress Test on ERDS...13

4.2 Unit/Functional Test on ERDS java classes ..17

5. Conclusion ...18

References...18

Appendix 1 ...19

Appendix 2 ...21

Appendix 3 ...22

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

6 / 22

1. Introduction

The European Resolution Discovery Service (ERDS) is a meta-resolver that interfaces
different resolution services in order to allow identification of an object in the World Wide
Web to be independent from the object’s actual physical location. Implementing resolution
services assures persistent accessibility of the digital objects and the ERDS provides this
accessibility across the different resolution scenarios for those objects in the Europeana
portal that have persistent identifiers.

The ERDS keeps track of namespaces of persistent identifiers and of the institutions that are
responsible for those namespaces. With the help of this information, the ERDS can forward
resolving requests to the right local resolver and present the returned link.

The following diagram visualizes this principle:

Fig.1: Basic functionality principle of the ERDS

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

7 / 22

The ERDS is currently running in a Europeana Sandbox. Please refer to [Sandbox] to have
access to the Europeana Sandbox where the ERDS is hosted.

The internal work flow between T5.4 partners and the EDL is documented in a
EuropeanaLabs ticket. [EuropeanaLabs #931]

The ERDS is a back-end service and users don’t interact with it directly. But for the sake of
testing purpose in the Europeana Sandbox, a simple graphic user interface (GUI) has been
implemented as shown in Fig.2 below. Hence, in the Sandbox, the ERDS takes persistent
identifiers as input and returns the resolved URL to redirect the user to the actual location of
the digital object.

Fig.2: Screenshot of the ERDS on the Europeana Sandbox

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

8 / 22

2. Functional requirements to develop the ERDS Service

The ERDS service:

1. must resolve all persistent identifiers that are in format urn:nbn:1. Resolving means
to return the URL with the highest priority pointing to the desired digital object or its
identical copies (see section Remote Interfaces)

2. must redirect all persistent identifiers that are in format DOI to the official resolver of
The International DOI Foundation2

3. must redirect all PURL3, ARK4, OpenURL5 and Handle6 requests

4. must be easily extensible for other types of persistent identifier types

5. must return clear, well defined error codes/messages in case it can not resolve the
request

6. may have a GUI, but it is not required

7. doesn’t host data by itself. It rather traffics the data provided by national resolvers

8. caching at the meta-resolver level will not be implemented

9. must handle errors thrown by the local resolvers

10. must offer an easy way to register additional resolvers

2.1 Obligations of the ERDS Service

1. The ERDS service is responsible neither for the correctness of the links that are
delivered, nor the authenticity or validity of the linked digital item. This will be the
responsibility of the local resolvers.

2. The ERDS service is not responsible for the content it resolves. It simply resolves an
identifier to link to the digital object, irrespective of the content of the digital object

3. The ERDS service manages neither relationships between digital entities nor part-of
/whole /fragment-of relations inside the same object.

4. The ERDS service does not guarantee that the returned URL is free to access. There
may still be legal, commercial or other issues that restrict access to an object to a
certain user community

1
 RFC 2141 and RFC 3188

2
 http://doi.org/

3
 http://purl.org/

4
 The ARK Identifier Scheme

5
 OpenURL – ANSI/NISO Z 39.88

6
 The Handle System

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

9 / 22

2.2 ERDS Service Process Flow-Diagram

1. The user sends a PI-request to the ERDS service (meta-resolver).

2. Upon receiving the PI-request, the ERDS service will check the look-up table which
resolver is responsible to resolve this specific request.

3. The ERDS service then forwards the request to the local resolver. The local resolver
will return (HTTP 303) a valid URL link that refers to the digital object back to the
ERDS service.

4. The ERDS service will redirect (HTTP 303) the valid URL link to the user.

5. The user can click on the provided valid URL to access the digital object directly from
the archival entity.

Fig.3: ERDS Process Flow Diagram

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

10 / 22

3. ERDS Architecture and Code-Descriptions

ERDS is designed as a Web application. It is fully implemented in Java and must be
deployed on a Tomcat Servlet container. It is developed and tested on Java 6.0.20 and
Tomcat 6.0.26 but should run on any other compatible version.

3.1 ERDS Architecture

ERDS uses Dependency Injection and ModelAndView Patterns built using the Spring
Framework. [Spring Framework]

The internal structure of the software can be seen in Class Diagram below:

Fig.4: Internal Structure and Architecture of ERDS

ResourceDescription

properties : Property

Property
HTTPResolver

getResponse()

ResolverResponse

resourceDescription : ResourceDescription
ResolverException

ResolverRequest

ResolvingService

resourceDescriptionProviders : ResourceDescriptionProvider
resolvers : Resolver

Uses
org.apache.commons.httpclient

Has inner class:
ResolverExceptionCode

HTTPResolverMultiThreaded

<<interface>>
DataProvider

implements implements

ResolverGUI

Uses
org.springframework.web.servlet.ModelAndView

extends

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

11 / 22

3.2 ERDS Code-Description

DataProvider: refers to an abstract expression for all classes that provide some kind of
data to the user or a partner system. All implementing classes shall resolve requests for a
well defined pattern and return an implementation of the class ResolverResponse.

HTTPResolver: Simple Resolver that queries a remote server via HTTP. It fetches the
URL by reading the header of the redirect-response of the remote resolver. HTTPClient from
Apache Project is used for this functionality in a single threaded manner.

HTTPResolverMultiThreaded: A Resolver that queries a remote server via HTTP. Like
HTTPResolver (which it extends), it fetches the URL by reading the header of the redirect-
response of the remote resolver. The difference is that HTTPResolverMultiThreaded
supports multiple simultaneous connections and request retries on error.

Property: A simple helper class to manage properties.

ResolverException: Exception type representing an error state during the process of
resolving a persistent identifier.

ResolverGUI: Spring controller to provide web access to the Resolvers. A simple graphical
user interface is also provided for manual testing.

ResolverRequest: Class representing a request for resolving a persistent identifier.

ResolverResponse: Class representing a response to a resolving request.

ResolvingService: Main service for resolving the URL for a given persistent identifier.
This class manages a list of known resolvers and iterates them until the given identifier
matches a registered pattern. A ResolverException will be thrown if none of the registered
resolvers matches the pattern or can resolve the id.

ResourceDescription: Simple utility class representing the description of a resource.
More information about all interfaces, classes, methods and parameters can be found in
JavaDoc.

3.3 The ERDS and HTTP Client Configuration

I. All the configuration of ERDS can be changed directly in the appropriate XML files:
• web.xml: Servlet, filters, mappings, time-outs …
• applicationContext.xml: Application context definition
• velocity-toolbox.xml: Configuration of the used Apache Velocity Engine.

For more information, please refer to [Velocity].
• MetaResolver-servlet.xml: All servlet specific configurations, especially

controller mappings
• metaResolver.xml: List of all registered local resolvers with their descriptions,

supported namespaces and patterns to match.

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

12 / 22

II. Default ERDS logs everything – log level DEBUG!

The Log4J configuration can be changed in appropriate Log4J configuration file. For
more information, please refer to [Log4J]

III. The performance of the ERDS relies to a great degree on the performance of its HTTP
communication with the other resolvers. The ERDS deploys an HTTP client
implementation based on the HTTP Components project from the Apache Software
Foundation – the Jakarta Commons HTTP Client. By default the Jakarta HTTP Client is
configured to provide maximum reliability and standards compliance rather than raw
performance. So a few configuration options and optimization techniques where
implemented to improve the performance of HTTP Client. The following points describe
these optimizations:

• Reuse of the HttpClient instance across requests to the ERDS: This is a
general recommendation from the HTTP Client documentation. An application
with much HTTP communication, such as the ERDS, should have a single
instance of HttpClient.

• Concurrent execution of HTTP methods: The ERDS application logic
allows for execution of multiple HTTP requests concurrently (e.g. multiple
requests against various sites, or multiple requests representing different user
identities), the use of a dedicated thread per HTTP session can result in a
significant performance gain.

To allow this, the MultiThreadedHttpConnectionManager was used to make
the HttpClient fully thread-safe. Each thread of execution has a local instance
of its Http-Method. The same HttpClient instance and connection manager
are shared among all threads for maximum efficiency.

• Automatic retries on failure: Occasional failures in HTTP requests happen,
so the ERDS should cope with them when communicating with the other
resolvers. For this reason an HttpRequestRetryHandler was implemented that
allows the HTTP client to retry the resolution requests in case of temporary
failure.

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

13 / 22

4. Tests on the ERDS

After the ERDS prototype was developed, different software testing techniques were
implemented in order to test quality and performance of the ERDS software.

The following assumptions were taken with respect to testing the ERDS:

• Integration and System Tests are not part of T5.4. These types of tests will be
handled by other testing tasks of EuropeanaConnect in cooperation with the
Europeana Foundation.

• In the production system, there is no separate GUI for the ERDS. Rather, the
ERDS runs as a back-end service. Hence, it is not necessary to apply
Acceptance Tests for the ERDS.

• Apart from the intensive expert tests that were applied in the different cycles of
the ERDS software development process, Unit/Functional Tests and
Stress/Robustness Tests were very important before deploying the software.
Hence, T5.4 task partners at the UW have applied Stress/Functional testing
techniques and partners at the ONB were responsible to apply the
Unit/Functional testing on the ERDS software. The results of these tests is
summarized as follows.

4.1 Stress Test on ERDS

The overall objective of this test is to determine the robustness of ERDS by testing beyond
the limits of normal operation. The test puts a greater emphasis on robustness, availability,
and error handling under a heavy load than on what would be considered correct behaviour
under normal circumstances.

4.1.1 Test Scope and Environment

The test has been performed on the first prototype of ERDS, which is online [Sandbox]. All
tests were performed on a Mac Book Pro with 2.4 GHz and 2 GB memory. The operating
system was Mac OS X, running Java Version 1.6.0_13 with the following heap size settings:-
Xms512m - Xmx1024m.

4.1.2 Test Preparation and Execution

A test case was created with:

• 50 different Persistent Identifiers (PIs), retrieved from random search on the web by
using Google (Details shown in Appendix 1)

• 20 threads, which were running in parallel. Each individual thread stands for a user
issuing a request.

The test was executed using Apache JMeter based on two phases [JMeter]:

1. The test was run locally by sending 20,000 HTTP requests to the service, which
performed perfectly without any error.

2. Due to the positive result of the local test the test was run remotely using the
sandbox link [Sandbox] by sending 10,000 HTTP requests to the service, which also
performed successfully without any error.

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

14 / 22

4.1.3 Stress Test Results

The results of the tests are summarized as shown in the following three elaborative figures
(Fig.5, Fig.6 and Fig.7).

Fig.5 shows a screenshot of the JMeter test monitor. The horizontal vector shows the HTTP
request count and the vertical vector shows the time. The black dots represent upcoming
HTTP requests, which were running in parallel. The red line shows the deviation7, which is
the variability of the requests. Among 10,070 samples 8,986 samples were different. The
variability is due to the various combinations of different threads and PIs. The blue line shows
the average response time of each PI, which is almost around 1,018 ms within the test. The
green line indicates the throughput8, which is calculated as requests/minute. It remains
nearly constant over time. The purple line is the median, dividing the samples into two equal
halves. 50% of the samples are smaller than the median, 50% are larger. The median also
remains constant over time.

7
 Deviation is a measure of the variability of a data set. This is a standard statistical measure.

8
 Throughput is calculated as requests/unit of time. The time is calculated from the start of the first sample to the end of

the last sample. This includes any intervals between samples, as it is supposed to represent the load on the server. �The
formula is: Throughput = (number of requests) / (total time).

Fig.5: Screenshot of the JMeter test monitor

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

15 / 22

Fig.6 shows the average response time of requests for different PIs. Each node on the
vertical vector represents a PI and the horizontal vector shows the time. The average
response time for the majority of PIs is less than 2 seconds. Longer response times were
retrieved only for PIs in the domain of the Dutch PI resolution service. This, however, is not

under the control of the ERDS as it forwards requests to external PI resolvers and depends
on their response times.

Fig.6: Average response time of requests for different PIs

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

16 / 22

Fig.7 shows minimum and maximum response time of requests for different PIs. The
maximum response time for the majority of PIs is less than 15 seconds.

Table 2 in Appendix 2 shows the number of requests, average reported error, average
reported bandwidth, and average reported bytes for different PIs.

4.1.4 Conclusion

The stress test on ERDS with 50 different Persistent Identifiers, as shown in Appendix 1, and
20 threads (totally 10,000 HTTP requests to the service) has been performed successfully.
Under a heavy load, the ERDS remained constant over time and the average response time
for the majority of PIs was less than 1,018ms.

Fig.7: Minimum and maximum response time of requests for different PIs

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

17 / 22

4.2 Unit/Functional Test on ERDS java classes

ONB has carried out Unit/Functional testing on the ERDS. The classes
HTTPResolverMultiThreadedTest.java, HTTPResolverTest.java and
ResolvingServiceTest.java were tested with Junit [Junit] with 96.6% statement coverage
(measured by CodeCover [CodeCover]).

The following figure, Fig.8 shows the statement coverage of all Junit tests.

HTTPResovlerMultiThreadedTest.java and HTTPResolverTest.java test malformed URNs
and resolves urn:nbn:de:gbv:089-3321752945 and doi:10.1000/182.

ResolvingServiceTest.java resolves urn:nbn:de:gbv:089-3321752945, urn:nbn:at:0001-
03582, urn:nbn:ch:bel-9039, urn:nbn:se:uu:diva-3475, urn:nbn:nl:ui:12-85062 and
urn:nbn:no-3132.

As a conclusion, all the three tests passed successfully.

Fig.8: Statement Coverage

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

18 / 22

5. Conclusion

The ERDS resolves URN:NBN, DOI, ARK, HANDLE and all HTTP based persistent
identifiers. The system takes PI requests as an input and returns a valid link to redirect the
user to the actual physical location of the requested digital object. This service is intended to
run as a back-end service for Europeana.

Users do not necessarily have direct interaction with the ERDS. But upon requesting access
to a digital object through the Europeana portal, the ERDS runs behind the scenes and
ascertains that the requested object is permanently accessible in the Europeana portal.

The ERDS handles error exceptions in case of failure occurrences from third parties that are
providing resolution services such as DOI or ARK.

Unit/Functionality testing has been implemented on the ERDS to make sure of its
performance quality. Moreover, in order to determine to what extent the ERDS can handle
requests beyond normal circumstances, a robustness/stress test has been implemented. In
both test cases, the ERDS has successfully passed the testing criteria.

References

[CodeCover] Apache JMeter
Retrieved on June 15, 2010: http://jakarta.apache.org/jmeter

[EuropeanaLabs #931] EuropeanaLabs ticket #931 Resolution Service
Retrieved on June 30, 2010: https://europeanalabs.eu/ticket/931

[JMeter] Apache JMeter
Retrieved on June 15, 2010: http://jakarta.apache.org/jmeter

[JUnit] Junit
Retrieved on July 07, 2010: http://junit.sourceforge.net/

[Log4J] Apache Log4J
Retrieved on June 30, 2010: http://logging.apache.org/log4j/

[Sandbox] Europeana Sandbox
Retrieved on June 25, 2010: http://sandbox12.isti.cnr.it:8080/erds

[Spring Framework] Spring Framework
Retrieved on June 30, 2010:
http://static.springsource.org/spring/docs/3.0.x/spring-framework-
reference/html/

[Velocity] Apache Velocity
Retrieved on June 28, 2010: http://velocity.apache.org/

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

19 / 22

Appendix 1

The following table, Table 1, shows details of PIs, which are chosen to carryout stress
testing.

Table 1: PIs selected for testing purposes

Persistent Identifier The name used in report

doi:10.1038/35057062 DOI1

doi:10.1594/WDCC/CCSRNIES_SRES_B2 DOI2

doi:10.1594/PANGAEA.587840 DOI3

doi:10.2312/EGPGV/EGPGV06/027-034 DOI4

doi:10.2314/CERN-THESIS-2007-001 DOI5

urn:nbn:at-123:anl-000001512 AT1

urn:nbn:ch:bel-9478 CH1

urn:nbn:de:swb:90-175200 DE1

urn:nbn:de:gbv:089-3321752945 DE1

urn:nbn:de:bsz:93-opus-59 DE1

URN:NBN:fi:jyu-20094141421 FI1

URN:NBN:fi:jyu-20094141415 FI2

URN:NBN:fi:jyu-20094141416 FI3

URN:NBN:fi:jyu-20094141417 FI4

URN:NBN:fi:jyu-20094141418 FI5

urn:nbn:se:vxu:diva-5859 SE1

urn:nbn:se:vxu:diva-5855 SE2

urn:nbn:se:vxu:diva-5856 SE3

urn:nbn:se:vxu:diva-5857 SE4

urn:nbn:se:vxu:diva-5858 SE5

urn:nbn:se:uu:diva-3475 SE6

urn:nbn:se:uu:diva-3470 SE7

urn:nbn:se:uu:diva-3471 SE8

urn:nbn:se:uu:diva-3472 SE9

urn:nbn:se:uu:diva-3473 SE10

urn:nbn:hu-3952 HU1

urn:nbn:hu-3946 HU2

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

20 / 22

Persistent Identifier The name used in report

urn:nbn:hu-3947 HU3

urn:nbn:hu-3948 HU4

urn:nbn:hu-3949 HU5

urn:nbn:nl:ui:12-85062 NL1

urn:nbn:nl:ui:12-85054 NL2

urn:nbn:nl:ui:12-85055 NL3

urn:nbn:nl:ui:12-85057 NL4

urn:nbn:nl:ui:12-85058 NL5

urn:nbn:no-3132 NO1

urn:nbn:no-3131 NO2

urn:nbn:no-3133 NO3

urn:nbn:no-3134 NO4

urn:nbn:no-3135 NO5

urn:nbn:se:liu:diva-17237 SE11

urn:nbn:se:liu:diva-16236 SE12

urn:nbn:se:liu:diva-17236 SE13

durn:nbn:se:liu:diva-17231 SE14

urn:nbn:se:liu:diva-17235 SE15

urn:nbn:hu-3010 HU6

urn:nbn:hu-3008 HU7

urn:nbn:hu-3007 HU8

urn:nbn:hu-3006 HU9

urn:nbn:hu-3005 HU10

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

21 / 22

Appendix 2

The following table, Table 2, shows the number of requests, average reported error, average
reported bandwidth, and average reported bytes for different PIs.

sampler_label request count average_report_error% average_report_bytes average_report_bandwidth

AT1 210 0.0 0.4226500155977982 0.04044892727400803
DE1 210 0.0 0.4235467807419329 0.02440357428102934
FI1 210 0.0 0.42422871179921456 0.03964518318599803
HU1 210 0.0 0.42425270915658564 0.013672206447429029
NL1 210 0.0 0.4182750337607706 0.03553703900115922
NO1 210 0.0 0.41978171350897536 0.018447438581937394
DOI1 210 0.0 0.4176735582803783 0.020802101047167277
CH1 210 0.0 0.41772174559950037 0.024883814923407736
SE1 210 0.0 0.4155667340808258 0.025567093991300804
DE2 210 0.0 0.4151731964184392 0.025948324776152453
DE3 210 0.0 0.41494267863282314 0.021881742818527783
FI2 210 0.0 0.41498777762188294 0.03890510415205152
FI3 210 0.0 0.41493775933609955 0.03890041493775934
FI4 210 0.0 0.4149230021457447 0.038899031451163565
FI5 210 0.0 0.4146174364401342 0.03887038466626258
SE2 210 0.009523809523809525 0.41442760640428794 0.03368380629061637
SE3 208 0.02403846153846154 0.41071492040423824 0.04574726173598139
SE4 203 0.0 0.4035159557762415 0.024825688685452357
SE5 203 0.0 0.40360581033310405 0.0126126815729095
SE6 203 0.0 0.40325624451233805 0.024415905429457967
SE7 203 0.0 0.40326105094200193 0.02441619644375402
SE8 203 0.0 0.4030920936365062 0.02440596660689784
SE9 203 0.0 0.40311690787487886 0.024407469031486804
SE10 203 0.0 0.40312091045751247 0.0244077113753572
HU2 203 0.0 0.4032506371558713 0.012995381861468508
HU3 203 0.0 0.4029880671858529 0.012986920133919088
HU4 203 0.0 0.4029776674937965 0.012986584987593051
HU5 203 0.0049261083743842365 0.40290648401572726 0.01734146163258501
HU6 202 0.0 0.4009997200942548 0.012920903921856668
HU7 202 0.0049504950495049506 0.401083322081821 0.0209996344085808
HU8 201 0.0 0.39919287569809103 0.01286461415823926
HU9 201 0.004975124378109453 0.3992753450454101 0.0182019616884381
HU10 200 0.0 0.40520116211693297 0.012662536316154155
NL2 200 0.0 0.4006739335562416 0.034041633026751
NL3 200 0.01 0.40013764735068863 0.042202017494017946
NL4 198 0.015151515151515152 0.39741320134397917 0.04648953553837446
NL5 195 0.02564102564102564 0.3931515024435878 0.05426506690128066
NO2 190 0.0 0.40617992060251445 0.017849703542102687
NO3 190 0.0 0.4061695009459474 0.017849245647038704
NO4 190 0.0 0.4061668961153343 0.0178491311769434
NO5 190 0.0 0.40616342305982145 0.017848978552433562
DOI2 190 0.0 0.40606793730311047 0.028155101121602386
DOI3 190 0.0 0.40606880515322685 0.018637923674025062
DOI4 190 0.0 0.4057470871630164 0.04160492592980149
SE11 190 0.0 0.4032223835111756 0.024807627110550845
SE12 190 0.0 0.40309748594462713 0.024735715895831123
SE13 190 0.0 0.4031907240668787 0.02480567931270836
SE14 190 0.0 0.4030094198149126 0.02473031179672205

Table 2: Testing data request and response on the ERDS

EuropeanaConnect Deliverable D5.4.1 – Europeana Resolution Service

22 / 22

Appendix 3

Acronyms

ARK: Archival Resources Key

DOI Digital Object Identifier

DoW Description of Work – Annex1, ECP 528001

ERDS European Resolution Discovery Service

NBN National Bibliography Number

PI Persistent Identifier

PURL Persistent Uniform Resource Locator

URL Uniform Resource Locator

URN Uniform Resource Name

DNB German National Library (Deutsche Nationalbibliothek)

ONB Austrian National Library (Österreichische Nationalbibliothek)

UW University of Vienna (Universität Wien)

